iracema.segmentation.onsets¶
Note onset detection methods.
- 
iracema.segmentation.onsets.cnn_model(audio, instrument='clarinet', smooth_odf=True, odf_threshold=0.328, display_plot=False, return_odf_data=False)[source]¶
- Extract the note onsets using the CNN method. - Parameters
- audio (ir.Audio) – Audio file to be processed. 
- instrument (string) – Name of the instrument (currently trained only for clarinet). 
- smooth_odf (bool) – If true, the final ODF will be smoothed by convolving it with a hanning window of length 5. 
- odf_threshold (float) – Minimum threshold for the peak picking in the ODF curve. 
- display_plot (bool) – Whether of not to plot the results 
- return_odf_data (bool) – Whether or not to return the odf data 
 
 
- 
iracema.segmentation.onsets.adaptative_rms(audio, short_window=512, long_window=4096, hop=512, alpha=0.1, min_time=None, odf_threshold=0.2, display_plot=False, display_plot_rms=False, return_odf_data=False)[source]¶
- Extract the note onsets using the adaptative RMS method. - Parameters
- audio (Audio) – Audio time series. 
- short_window (int) – Length of the short term window for the calculation of the RMS. 
- long_window (int) – Length of the long term window for the calculation of the RMS. 
- hop (int) – Length of the hop for the sliding window. 
- alpha (float) – Reduction factor for the long term RMS curve. 
- display_plot_rms (bool) – Whether of not to plot the RMS curves used to calculate the ODF. 
- min_time (float) – Minimum time (in seconds) between successive onsets. 
- odf_threshold (float) – Ratio of the ODF maxima to be defined as a minimum threshold for the peak picking. 
- display_plot (bool) – Whether of not to plot the results. 
- return_odf_data (bool) – Whether or not to return the odf data. 
 
- Returns
- onsets (PointList) – List of onsets. 
- odf_data (TimeSeries) – Time series containing the onset detection function obtained. This will only be returned if the argument return_odf_data has been set to True. 
 
 
- 
iracema.segmentation.onsets.rms_derivative(audio, window=1024, hop=512, min_time=None, odf_threshold=0.2, display_plot=False, return_odf_data=False)[source]¶
- Extract note onsets from the - audiotime-series using its- rms. The RMS will be calculated if it’s not passed as an argument. The argument- min_timecan be used to specify the minimum distance (in seconds) between two adjacent onsets.- Parameters
- audio (Audio) – Audio object 
- window (int) – Window length for computing the RMS. 
- hop (int) – Hop length for computing the RMS. 
- min_time (float, optional) – Minimum time (in seconds) between successive onsets. 
- odf_threshold (float) – Minimum threshold for the peak picking in the ODF curve. 
- display_plot (bool) – Whether of not to plot the results 
- return_odf_data (bool) – Whether or not to return the odf data 
 
- Returns
- onsets (list) – List of onset points. 
- odf_data (TimeSeries) – Time series containing the onset detection function obtained. This will only be returned if the argument return_odf_data has been set to True. 
 
 
- 
iracema.segmentation.onsets.pitch_variation(audio, window, hop, minf0=120, maxf0=4000, smooth_pitch=True, min_time=None, odf_threshold=0.04, display_plot=False, return_odf_data=False)[source]¶
- Extract note onsets from the - audiotime-series using its- pitch. The argument- min_timecan be used to specify the minimum distance (in seconds) between two adjacent onsets.- Parameters
- audio (Audio) – Audio object 
- window (int) – Window length for computing the pitch. 
- hop (int) – Hop length for computing the pitch. 
- minf0 (int) – Minimum frequency for the pitch detection. 
- maxf0 (int) – Maximum frequency for the pitch detection. 
- smooth_pitch (bool) – Whether or not the pitch curve should be smoothed. 
- min_time (float) – Minimum time (in seconds) between successive onsets. 
- odf_threshold (float) – Minimum threshold for the peak picking in the ODF curve 
- display_plot (bool) – Whether of not to plot the results 
- return_odf_data (bool) – Whether or not to return the odf data 
 
- Returns
- onsets (list) – List of onset points. 
- odf_data (TimeSeries) – Time series containing the onset detection function obtained. This will only be returned if the argument return_odf_data has been set to True. 
 
 
- 
iracema.segmentation.onsets.extract_from_odf(audio, odf, min_time=None, odf_threshold=0.2, odf_threshold_criteria='absolute', display_plot=False, **parameters)[source]¶
- Generic method to extract onsets from an ODF (onset detection function). - Parameters
- audio (Audio) – Audio time series. 
- odf (function) – Reference to the ODF. 
- min_time (float) – Minimum time (in seconds) between successive onsets. 
- odf_threshold (float) – Minimum ODF threshold for a peak to be considered as an onset. 
- odf_threshold_criteria (string ['absolute', 'relative_to_max']) – Specifies how the argument - odf_thresholdwill be used: if- 'absolute'its value will be used directly as the threshold; else, if- 'relative_to_max', its value will be used to calculate the threshold, relative to the maximum value in the ODF curve, e.g.:- odf_threshold``==``0.2set the threshold to 20% of the maximum value of the ODF curve.
- display_plot (bool) – Whether or not to plot the results. 
 
- Returns
- onsets (PointList) – List of onsets. 
- odf_data (TimeSeries) – Time series containing the onset detection function obtained.